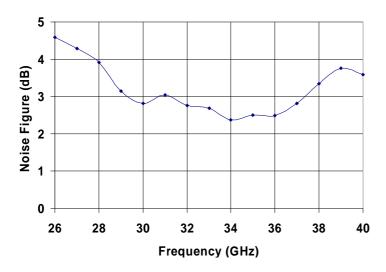
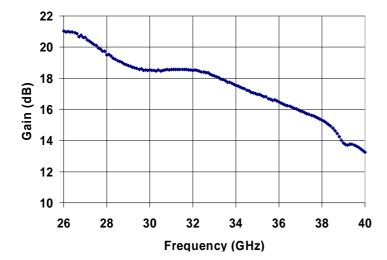


November 2, 2004


30-38 GHz Balanced Low Noise Amplifier


TGA4511-EPU

Preliminary Measured Data

Bias Conditions: Vd = 3.5 V, Id = 110 mA

Key Features

- 0.15 um pHEMT Technology
- 15 dBm Nominal Pout @ 35 GHz
- 17 dB Nominal Gain @ 35 GHz
- 2.5 dB Noise Figure @ 35 GHz
- Bias Conditions: 3.5V, 110 mA
- Chip Dimensions: 2.7mm x 1.8mm

Primary Applications

- Point-to-Point Radio
- Point-to-Multipoint Radio

November 2, 2004

TABLE I MAXIMUM RATINGS 5/

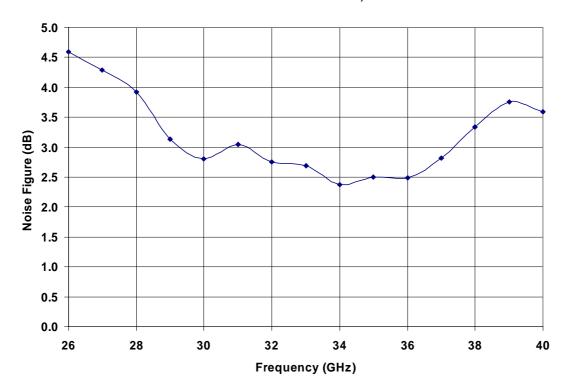
SYMBOL	PARAMETER	VALUE	NOTES		
V ⁺	Positive Supply Voltage	6 V	<u>4/</u>		
V	Negative Supply Voltage Range	-2 to 0 V			
I ⁺	Positive Supply Current (Quiescent)	400 mA	<u>4/</u>		
I _G	Gate Supply Current	40 mA			
P _{IN}	Input Continuous Wave Power	TBD			
P_{D}	Power Dissipation	TBD	<u>3</u> / <u>4</u> /		
T _{CH}	Operating Channel Temperature	150 ⁰ C	<u>1</u> / <u>2</u> /		
T _M	Mounting Temperature (30 Seconds)	320 °C			
T _{STG}	Storage Temperature	-65 to 150 °C			

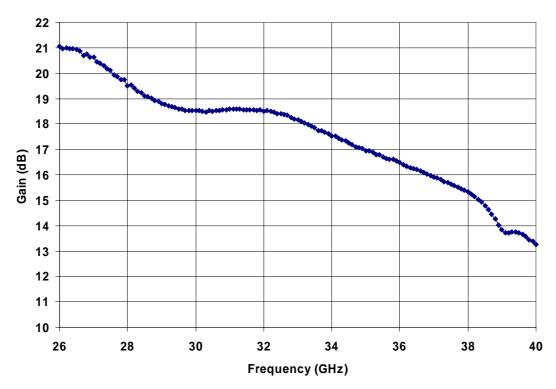
- 1/ These ratings apply to each individual FET.
- <u>2</u>/ Junction operating temperature will directly affect the device median time to failure (T_M). For maximum life, it is recommended that junction temperatures be maintained at the lowest possible levels.
- 3/ When operated at this bias condition with a base plate temperature of TBD, the median life is reduced from TBD to TBD.
- 4/ Combinations of supply voltage, supply current, input power, and output power shall not exceed P_D.
- 5/ These ratings represent the maximum operable values for this device.

TABLE II ELECTRICAL CHARACTERISTICS

 $(Ta = 25^{\circ}C \pm 5^{\circ}C)$

PARAMETER	TYPICAL	UNITS	
Drain Operating	3.5	V	
Quiescent Current	110	mA	
Small Signal Gain	17	dB	
Input Return Loss (Linear Small Signal)	18	dB	
Output Return Loss (Linear Small Signal	18	dB	
Output Power @ 1 dB Compression Gain	15	dBm	
Third Order Intercept Point @ -12 dBm @ 35GHz	25	dBm	

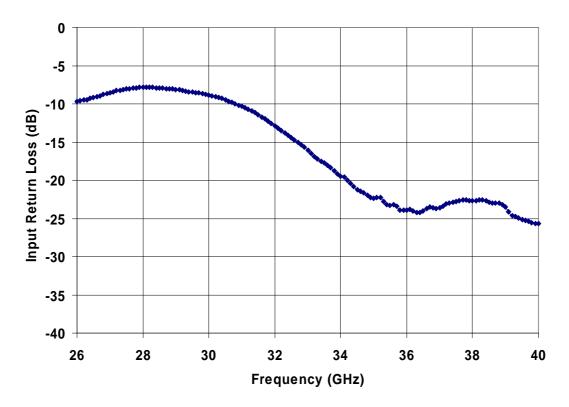


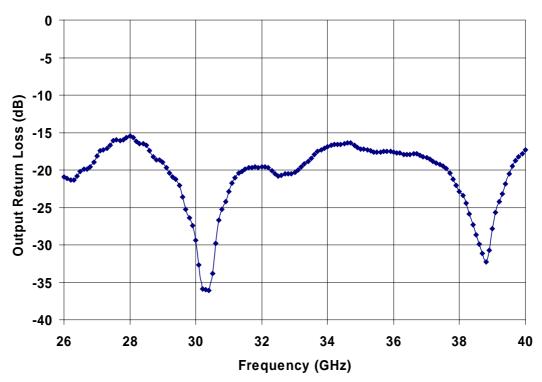

November 2, 2004

TGA4511-EPU

Preliminary Measured Data

Bias Conditions: Vd = 3.5 V, Id = 110 mA

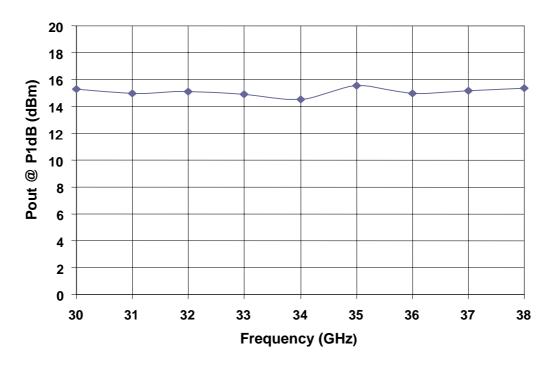



November 2, 2004

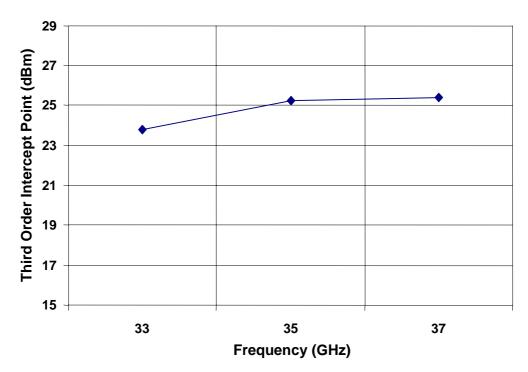
TGA4511-EPU

Preliminary Measured Data

Bias Conditions: Vd = 3.5 V, Id = 110 mA



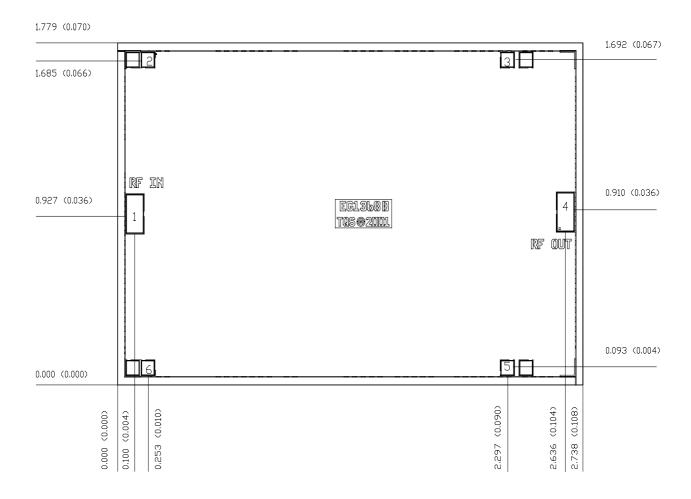
November 2, 2004


TGA4511-EPU

Preliminary Measured Data

Bias Conditions: Vd = 3.5 V, Id = 110 mA

TOI at -12 dBm Input Power (P1dB - 10 dB)



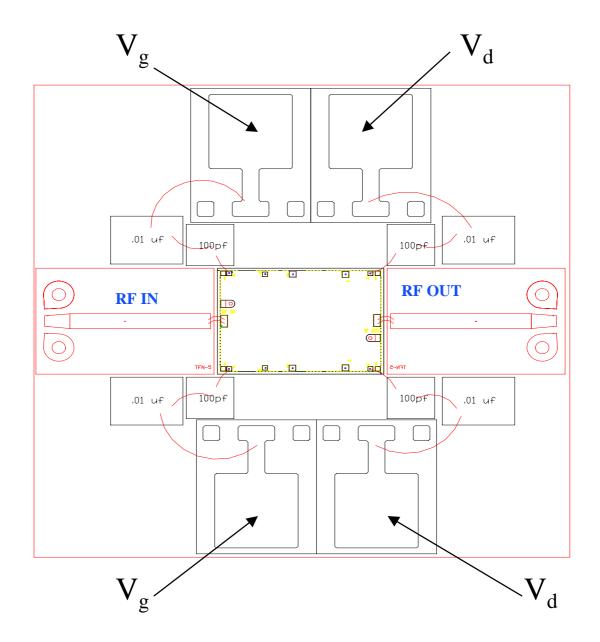
Advance Product Information November 2, 2004

TGA4511-EPU

Mechanical Drawing

Units: millimeters (inches) Thickness: 0.1016 (0.004)

Chip edge to bond pad dimensions are shown to center of bond pad Chip size tolerance: ± -0.051 (0.002)


Bond pad	#1	(RF In)	0.100	×	0.200	(0.004 ×	((800.0
Bond pad	#2	(Vg)	0.085	X	0.085	(0.003	X	0.003)
Bond pad	#3	(/ q)	0.085	X	0.085	(0.003	X	0.003)
Bond pad	#4	(RF Out)	0.100	X	0.200	(0.004	×	(800.0
Bond pad	#5	(Vd)	0.085	×	0.085	(0.003	X	0.003)
Bond pad	#6	(Vg)	0.085	X	0.085	(0.003	X	0.003)

November 2, 2004

TGA4511-EPU

Chip Assembly Diagram

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

Advance Product Information November 2, 2004 TGA4511-EPU

Assembly Process Notes

Reflow process assembly notes:

- Use AuSn (80/20) solder with limited exposure to temperatures at or above 300 □ C.
- An alloy station or conveyor furnace with reducing atmosphere should be used.
- No fluxes should be utilized.
- Coefficient of thermal expansion matching is critical for long-term reliability.
- Devices must be stored in a dry nitrogen atmosphere.

Component placement and adhesive attachment assembly notes:

- Vacuum pencils and/or vacuum collets are the preferred method of pick up.
- Air bridges must be avoided during placement.
- The force impact is critical during auto placement.
- Organic attachment can be used in low-power applications.
- Curing should be done in a convection oven; proper exhaust is a safety concern.
- Microwave or radiant curing should not be used because of differential heating.
- Coefficient of thermal expansion matching is critical.

Interconnect process assembly notes:

- Thermosonic ball bonding is the preferred interconnect technique.
- Force, time, and ultrasonics are critical parameters.
- Aluminum wire should not be used.
- Discrete FET devices with small pad sizes should be bonded with 0.0007-inch wire.
- Maximum stage temperature is 200 □ C.

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.